1. Show that the following Hoare triple holds [5 pts]

\{ x \geq 2 \} \quad x := x - y + 3 \quad \{ x + y \geq 0 \}

2. For each of the statements below, indicate whether the statement is true or false. If true, give a proof. If false, give a counterexample.

Constants:
(a) \{ \text{false} \} \text{ next } \{ Q \} [2 pts]
(b) \{ P \} \text{ next } \{ \text{true} \} [2 pts]
(c) \text{true} \text{ next } \text{false} [2 pts]

Junctivity:
(a) \((P_1 \text{ next } Q_1) \land (P_2 \text{ next } Q_2) \implies (P_1 \land P_2) \text{ next } (Q_1 \land Q_2) \) [3 pts]
(b) \((P_1 \text{ next } Q_1) \land (P_2 \text{ next } Q_2) \implies (P_1 \lor P_2) \text{ next } (Q_1 \lor Q_2) \) [3 pts]

Weakening:
(a) \(P \text{ next } Q) \land [Q \implies Q'] \implies (P \text{ next } Q') [3 pts]

3. For each of the statements below, indicate whether the statement is true or false. If true, give a proof. If false, give a counterexample.

(a) \(\text{stable}(P) \land \text{stable}(Q) \implies \text{stable}(P \land Q) \) [5 pts]
(b) \(\text{stable}(P) \land \text{stable}(Q) \implies \text{stable}(P \lor Q) \) [5 pts]
(c) \(\text{stable}(P) \land [P \implies P'] \implies \text{stable}(P') \) [5 pts]

4. Given \(N \) agents indexed \(0, \ldots, N-1 \), where \(N > 2 \). Each agent \(j \) has a real number \(x_j \). Let \(A \) be the average of the \(x_j \) values and let \(V \) be the variance.

Initial Values The initial values of \(x_j \) are arbitrary (but finite). Let \(x_j^{(0)} \) be the initial value of \(x_j \), and let \(A^{(0)} \) be the average of the initial values of \(x_j \).
Iteration Pick any two agents i and j non-deterministically, with weak fairness. Set:

$$x_i, x_j := (x_i + x_j)/2, (x_i + x_j)/2$$

(a) Prove that the variance never increases. More formally, show that:

$$\forall K : \text{stable}(V \leq K)$$

(b) Prove the following Hoare triple.

$$\{x_i \neq x_j \land V = K\} \ x_i, x_j := (x_i + x_j)/2, (x_i + x_j)/2\} \ {V < K}$$

This implies that performing the the assignment action corresponding to any x_j, x_k that are not equal decreases the variance V.

5. [Nondeterministic Iteration – Shortest Paths] Somebody proposes the following algorithm to find the shortest path between every pair of vertices in a finite directed graph. Let W be the edge-weight matrix, i.e., $W[j, k]$ is the weight of edge (j, k). Weights are real numbers. Assume that the graph is completely connected, and therefore $W[j, k]$ exists for all j, k. Also $W[j, j] = 0$ for all j. The graph has no cycles of negative weight.

Let D be a matrix with the same dimensions as W. The proposed algorithm is as follows:

(a) **initially:** $D = W$

(b) There is a command for every triple (i, j, k) of vertices, and the command is:

$$\text{IF } D[i, k] > D[i, j] + D[j, k] \text{ THEN } D[i, k] := D[i, j] + D[j, k] \quad (1)$$

We will complete a part of the proof for the correctness of the algorithm. The claim is that the algorithm will terminate with D being the matrix of shortest path lengths, i.e., $D[j, k]$ will be the length of the shortest path from vertex j to vertex k.

Prove that the conjunction of following two predicates is an invariant for the above program.

(a) $\forall j, k : D[j, k] \leq W[j, k]$

and

- for all j, k, $D[j, k]$ is the length of some path from vertex j to vertex k

(b) Does the program (algorithm) have a fixed point at which the invariant property from the previous part holds. If yes, propose the fixed point and prove it. Recall that a state is a fixed point if there exists no action in the program that changes the state.