Goals:
- Define liveness (progress) properties and metrics (variant functions)
- New properties: transient, ensures, leads-to, induction

Reading:
- P. Sivilotti, *Introduction to Distributed Algorithms*, Section 3.5
Last week: Reasoning About Programs (Safety)

Initial tools for reasoning about program properties

- **UNITY approach**: assume that any (enabled) command can be run at any time
- **Hoare triple**: show that all (enabled) actions satisfying a predicate \(P \) will imply a predicate \(Q \)
- “Lift” Hoare triple to define **next**:
 \[
 (\forall a : a \in G : \{P\} a \{Q\})
 \]
- **Stability**: \(\text{stable}(P) \equiv P \text{ next } P \)
- **Invariant**: \(\text{invariant}(P) \equiv \text{initially}(P) \land \text{stable}(P) \)
Properties for RoboFlag program

Safety (Defenders do not collide)

\[z_i < z_{i+1} \quad \text{next} \quad z_i < z_{i+1} \]

Stability (switch predicate stays false)

\[\forall i . \; y_i > 2\delta \land z_i + 2\delta < z_{i+1} \land \neg switch_{i,i+1} \quad \text{next} \quad \neg switch_{i,i+1} \]

Robots are "far enough" apart.

Progress (we eventually reach a fixed point)

- Let \(\rho \) be the number of blue robots that are too far away to reach their red robots
- Let \(\beta \) be the total number of conflicts in the current assignment
- Define the metric that captures “energy” of current state (\(V = 0 \) is desired)

\[
V = \left[\binom{n}{2} + 1 \right] \rho + \beta \\
\rho = \sum_{i=1}^{n} r(i,i) \\
\beta = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \gamma(i,j) \\
\text{where} \quad \gamma(i,j) = \begin{cases}
1 & \text{if } x_{\alpha(i)} > x_{\alpha(j)} \\
0 & \text{otherwise}
\end{cases}
\]

- Can show that \(V \) always decreases whenever a switch occurs

\[
\forall i . \; z_i + 2\delta m < z_{i+1} \land \exists j . \; switch_{j,j+1} \land V = m \quad \text{next} \quad V < m
\]
The ‘Transient’ Property

Definition

• Informally: “if P becomes true at some point in the computation, it is guaranteed to become false at some later point $\Rightarrow P$ is false infinitely often” [not quite accurate]

\[(\exists a : a \in G : \{P\} a \{\neg P\})\]

• Compare to next: use \exists instead of \forall

• Allowable for P to remain true for one or more actions, as long as there is always one action that falsifies P for every state for which P is true (strong property!)

Simple example

<table>
<thead>
<tr>
<th>Program</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>var</td>
<td>n : natural number</td>
</tr>
<tr>
<td>initially</td>
<td>$n = 0$</td>
</tr>
<tr>
<td>assign</td>
<td>$n := n + 1$</td>
</tr>
</tbody>
</table>

\[
\text{transient}(n = 1) \equiv \text{true} \\
\text{transient}(n = 0) \equiv \text{true} \\
\text{transient}(n = 0 \lor n = 1) \equiv \text{false}
\]

Which of the following hold (show formally in HW #3):

• Weakening: $\text{transient}(P) \land [P \Rightarrow P'] \Rightarrow \text{transient}(P')$ ____

• Strengthening: $\text{transient}(P) \land [P' \Rightarrow P] \Rightarrow \text{transient}(P')$ ____

• Intuition: remember that $P' \Rightarrow P$ (formula) is same as $P' \subseteq P$ (for the program graph)
The ‘Ensures’ Property

Definition

• If P holds, it will continue to hold as long as Q doesn’t hold AND eventually Q holds

\[P \text{ ensures } Q \equiv ((P \land \neg Q) \text{ next } (P \lor Q)) \land \text{ transient.}(P \land \neg Q) \]

Example

<table>
<thead>
<tr>
<th>Program</th>
<th>CountIfSmall</th>
</tr>
</thead>
<tbody>
<tr>
<td>var</td>
<td>n: natural number</td>
</tr>
<tr>
<td>initially</td>
<td>n = 0</td>
</tr>
<tr>
<td>assign</td>
<td>(n \leq 2 \rightarrow n := n + 1)</td>
</tr>
</tbody>
</table>

\((n = 1 \lor n = 2)\) ensures \((n \geq 2)\)?

\(n = 1\) ensures \(n = 3\)?

Some properties

• Weakening: \((P \text{ ensures } Q) \land [Q \Rightarrow R] \Rightarrow (P \text{ ensures } R)\)

• Disjunction: \((P \text{ ensures } Q) \Rightarrow (P \lor R) \text{ ensures } (Q \lor R)\)

Remarks

• Ensures is still “low level”: defines properties at the level of single actions
The ‘Leads-To’ Property

Definition

• if P is true at some point, Q will be true (at that same or a later point) in the computation

\[P \text{ ensures } Q \implies P \leadsto Q \]

\[(P \leadsto Q) \land (Q \leadsto R) \implies P \leadsto R \]

\[(\forall i :: P_i \leadsto Q) \implies (\exists i :: P_i) \leadsto Q \]

Example

Program: \textit{CountIfSmall}

\begin{align*}
\text{var} & \quad n : \text{natural number} \\
\text{initially} & \quad n = 0 \\
\text{assign} & \quad n \leq 2 \rightarrow n := n + 1
\end{align*}

\begin{align*}
(n = 1 \lor n = 2) \leadsto (n \geq 2)?
(n = 1) \leadsto (n = 3)?
\end{align*}

Which of the following is true?

\begin{align*}
(P \leadsto Q) \land [P' \implies P] & \implies P' \leadsto Q \\
(P \leadsto Q) \land [Q \implies Q'] & \implies P \leadsto Q'
\end{align*}

Remarks

• Leads-to is key property we will use in proofs (show that program leads to fixed point)
Which of the Following Properties are True?

Disjunction
- \((P \sim Q) \land (R \sim Q) \Rightarrow (P \lor R) \sim Q\)
- \((P \sim Q) \land (P \sim R) \Rightarrow P \sim (Q \land R)\)
- \((P \sim Q) \land (P' \sim Q') \Rightarrow (P \land P') \sim (Q \land Q')\)

Stable Strengthening
- \(\text{stable.} P \land \text{transient.} (P \land \neg Q) \Rightarrow P \sim (P \land Q)\)

Progress-Safety-Progress (PSP)
- \((P \sim Q) \land (R \text{ next } S) \Rightarrow (P \land R) \sim ((R \land Q) \lor (\neg R \land S))\)

- PSP allow us to combine a safety proof with a progress proof
- Either stay in R and satisfy Q or move out of R and satisfy S
- Very useful in progress proofs
Induction (and Metrics)

Approach: use metric to show that a property is eventually satisfied

• Definition: a *metric* (or *variant function*) is a function from the state space to a “well-founded set” (e.g., set with lower bound)

\[
\text{Theorem 10 (Induction for } \leadsto \text{). For a metric } M, \\
(\forall m :: P \land M = m \leadsto (P \land M < m) \lor Q) \implies P \leadsto Q
\]

• This theorem gives us a way to prove properties of programs: find a metric that shows that we eventually get to a desired fixed point (= termination)

Problem: can be hard to find a function that strictly decreases

• Alternative: make sure that P doesn’t increase and eventually decreases

\[
\text{Theorem 11 (Restricted Form of Induction for } \leadsto \text{). For a metric } M \\
(\forall m :: P \land M = m \ \text{next} \ (P \land M \leq m) \lor Q) \\
\land (\forall m :: \text{ transient.}(P \land M = m)) \\
\implies P \leadsto Q
\]

OK for M to remain = m, as long as there is some action that decreases m
Reasoning about Fixed Points

Variant: show that all *enabled* actions decrease the metric

Theorem 12 (Induction for \sim). For a metric M,

\[
(\forall i, m :: \{ P \land M = m \land g_i \} \quad g_i \rightarrow a_i \quad \{(P \land M < m) \lor Q\}) \\
\land (\forall i :: \neg g_i) \Rightarrow Q \\
\Rightarrow P \sim Q
\]

- Allows you to reason about fixed point (metric at min or all guards disabled)
Example: FindMax

Program: FindMax

define A : array 0..N-1 of int,
define r : int

Initially: r = A[0]

Specification

• Safety: stable(r = M) [Lecture 2.2]
• Progress: true → (r = M)

Structure of the proof

• Fixed point: FP \equiv (\forall x : 0 \leq x \leq N-1 : r = \text{max}(r, A[x]))
 \equiv r \geq (\text{Max} x : 0 \leq x \leq N-1 : A[x])
 \equiv r \geq M

• Invariant: invariant.(r \leq M)
 - Combined with FP, this means that if we terminate at FP then r = M

• Metric: r
 - Never decreases and must increase at some point if r < M

\begin{align*}
\text{transient.}(r = k \land r < M) \\
\Rightarrow \{ \text{transient.} P \Rightarrow (P \land \neg P) \} \\
r = k \land r < M \land P \Rightarrow r \neq k \lor r \geq M \\
\Rightarrow \{ \text{stable.}(r \geq k) \} \\
r = k \land r < M \land P \Rightarrow r > k \lor r \geq M \\
\equiv \{ [X \lor Y \equiv (\neg Y \land X) \lor Y] \} \\
r < M \land r = k \land P \Rightarrow (r < M \land r > k) \lor r \geq M \\
\Rightarrow \{ \text{induction} \} \\
r < M \land P \Rightarrow r \geq M \\
\equiv \{ \text{definition of FP} \} \\
r < M \land P \Rightarrow FP \\
\equiv \{ \text{initially.}(r < M) \} \\
true \land P \Rightarrow FP
\end{align*}

Will show on Wed
Properties for RoboFlag program

Safety (Defenders do not collide)

\[z_i < z_{i+1} \text{ next } z_i < z_{i+1} \]

Stability (switch predicate stays false)

\[\forall i . \; y_i > 2\delta \land z_i + 2\delta < z_{i+1} \land \neg \text{switch}_{i,i+1} \text{ next } \neg \text{switch}_{i,i+1} \]

Robots are "far enough" apart.

Progress (we eventually reach a fixed point)

- Let \(\rho \) be the number of blue robots that are too far away to reach their red robots
- Let \(\beta \) be the total number of conflicts in the current assignment
- Define the *metric* that captures “energy” of current state (\(V = 0 \) is desired)

\[
V = \left(\begin{pmatrix} n \\ 2 \end{pmatrix} + 1 \right) \rho + \beta \\
\rho = \sum_{i=1}^{n} r(i,i) \\
\beta = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \gamma(i,j) \\
\gamma(i,j) = \begin{cases}
1 & \text{if } x_{\alpha(i)} > x_{\alpha(j)} \\
0 & \text{otherwise}
\end{cases}
\]

- Can show that \(V \) always decreases whenever a switch occurs

\[
\forall i . \; z_i + 2\delta m < z_{i+1} \land \exists j . \; \text{switch}_{j,j+1} \land V = m \text{ next } V < m
\]
Summary: Liveness Properties and Metrics

Establish *progress* properties

- **Transient**: $(\exists a : a \in G : \{P\} \setminus \{\neg P\})$
- **Ensures**:

 $$((P \land \neg Q) \land \text{next}(P \lor Q)) \land \text{transient} \cdot (P \land \neg Q)$$

- **Leads-to**:

 $$P \text{ ensures } Q \quad \ P \leadsto Q$$

 $$(P \leadsto Q) \land (Q \leadsto R) \quad \Rightarrow \quad P \leadsto R$$

 $$\forall i :: P_i \leadsto Q \quad \Rightarrow \quad \exists i :: P_i \leadsto Q$$

 - This is the main property that we care about for proving that computations terminate correctly

- **Metrics**:

 $$\forall m :: P \land M = m \land \text{next}(P \land M \leq m) \lor Q$$

 $$\land \forall m :: \text{transient} \cdot (P \land M = m)$$

Next (Wed): show that we can use all of this to do something useful