Goals:
 • Define safety properties, program invariants
 • New properties: next, stable, invariant

Reading:
 • P. Sivilotti, *Introduction to Distributed Algorithms*, Section 3.3
The ‘Next’ Relation

Use to reason about properties of a program G as it executes

\[P \text{ next } Q \equiv (\forall a : a \in G : \{P\} \ a \ \{Q\}) \]

- \(P \) and \(Q \) are predicates on states
- next is a binary relation between predicates

P next Q in terms of graphs means that

- (1) for all edges \((u, v)\) in a graph, if \(u \) is in \(P \) then \(v \) is in \(Q \),
- (2) furthermore for all \(u \) in \(P \), \(u \) is also in \(Q \) (why: __________)

Some useful properties of next (prove in HW #2)

\[
(P \text{ next } Q) \land (Q \subseteq Q') \Rightarrow (P \text{ next } Q')
\]

\[
(P \text{ next } Q) \land (P' \subseteq P) \Rightarrow (P' \text{ next } Q)
\]

RoboFlag Drill examples (z = defender pos’n, y = attacker height)

- Defenders never collide
 \[z_i < z_{i+1} \text{ next } z_i < z_{i+1} \]
- If attackers are far enough away, we won’t switch back and forth
 \[\forall i . \ y_i > 2\delta \land z_i + 2\delta < z_{i+1} \land \neg\text{switch}_{i,i+1} \text{ next } \neg\text{switch}_{i,i+1} \]
The ‘Stable’ Property

Definition: $\text{stable}(P)$

- Informal: once P becomes true, it remains true
- Formally: $\text{stable}(P) \equiv P \text{ next } P$
- Note: $\text{stable}(P)$ does not mean that P is true for all (or even any) program executions

When do we use stable in a proof?

- Termination: $\text{stable}([p])$
- Often combined with progress (Wed + W3)
 - Show that if we satisfy some conditions then we eventually get to a good set of states (and stay there)

Some useful results (will prove on the homework)

- $\text{stable}(P) \land \text{stable}(Q) \implies \text{stable}(P \land Q)$
 - Interpretation: if P is stable and Q is stable, then at the point that both of them are true, they will both remain true
- $\text{stable}(P) \land \text{stable}(Q) \implies \text{stable}(P \lor Q)$
 - Note: not true that $\text{stable}(P) \lor \text{stable}(Q) \implies \text{stable}(P \lor Q)$
Which of the following formulas are true?

\[\text{stable}(P) \land (P \subseteq Q) \Rightarrow \text{stable}(Q) \]

\[\text{stable}(P) \land (Q \subseteq P) \Rightarrow \text{stable}(Q) \]

\[\forall P : \text{stable} (\text{reachable}(P)) \]

\[(P \subseteq Q) \land \text{stable}(Q) \Rightarrow \text{reachable}(P) \subseteq Q \]

Reachable(P) is the smallest stable set that includes P

- Reachable(P) = set of points that we can reach from states that satisfy predicate P
- Proof sketch (exercise: turn into a formal proof = sequence of implications/equivals)
 - Let \(Q = \text{reachable}(P) \). Clear that \(P \subseteq Q \) and \(\text{stable}(Q) \)
 - Suppose \(Q' \) is a smaller set \((Q' \subset Q) \) with \(P \subseteq Q' \) and \(\text{stable}(Q') \)
 - \(Q' \subset Q \land \text{stable}(Q) \implies Q = \text{reachable}(P) \subset Q' \quad \therefore Q = Q' \)
- Algorithm for finding reachable(P): start with P add neighbors until you stop growing

There can be an edge from a vertex which is in Q and not in P to a vertex outside Q
Examples: Properties for Average Consensus

Program \textit{AverageConsensus}

constant \(N \) \{number of agents\}

\(G \) \{interconnection graph\}

var \(x \) : array of \(N \) numbers

assign \(\left[i, j : j \in \mathcal{N}_i : x[i] := \alpha x[i] + (1 - \alpha) x[j] \right| \| x[j] := \alpha x[j] + (1 - \alpha) x[i]) \)

What are some stable properties for this program? [assume \(\alpha = 1/2 \)]

- \(\text{stable}(x_i \leq x_i^0) \)?
 - __

- \(\text{stable}(x_i + x_j \leq x_i^0 + x_j^0) \)?
 - __

- \(\text{stable}(x_i \leq \max_i x_i^0) \)?
 - __

- \(\text{stable}(\left[+i : 0 \leq j \leq N - 1 : x_i \right] \leq \left[+i : 0 \leq i \leq N - 1 : x_i^0 \right]) \)?
 - __

If time, add proof of the last property here?
The ‘Invariant’ Property

A predicate P is *invariant* if it is always true

$$\text{invariant}(P) \equiv \text{initially}(P) \land \text{stable}(P)$$

- Invariants are a critical part of proofs; establish the key properties that a problem *always* satisfies
- Invariants are not unique; a program can have many invariants

Some examples of useful invariants

- Amount of memory required is less than M
- Values of a variable (e.g., address register) is in a given range

Proving properties about invariants comes down to evaluating Hoare triples

$$\text{initially}(P) \land (\forall a : a \in G : \{P\} \ a \ {P})$$

Example:

- For average consensus,

 $$\text{invariant}((+i : 0 \leq j \leq N - 1 : x_i) = (+i : 0 \leq i \leq N - 1 : x_i^0))$$

Reachability and invariants

- Recall that reachable(P) is the smallest stable set of vertices that includes P. Hence:

 $$\text{invariant}([\text{reachable(init)}]) \quad \text{invariant}(I) \implies \text{reachable(init)} \subseteq I$$
Which of the following formulas are true?

\[\text{invariant}(P) \land (P \subseteq Q) \Rightarrow \text{invariant}(Q) \]

\[\text{invariant}(P) \land \text{invariant}(Q) \Rightarrow \text{invariant}(P \cap Q) \]

\[\text{invariant}(P) \lor \text{invariant}(Q) \Rightarrow \text{invariant}(P \cup Q) \]
Example: FindMax

Let \(M = (\max x : 0 \leq x < N : A[x]) \). Prove that \(r \leq M \) is an invariant

1. initially \((r \leq M) \)
 \[
 r = A[0] \\
 \Rightarrow \{ A[0] \leq M \} \\
 r \leq M
 \]

2. stable \((r \leq M) \)

<table>
<thead>
<tr>
<th>Program</th>
<th>(\text{FindMax})</th>
</tr>
</thead>
<tbody>
<tr>
<td>var</td>
<td>(A : \text{array} \ 0..N-1 \text{ of int}),</td>
</tr>
<tr>
<td>(r : \text{int})</td>
<td></td>
</tr>
<tr>
<td>initially</td>
<td>(r = A[0])</td>
</tr>
<tr>
<td>assign</td>
<td>(</td>
</tr>
</tbody>
</table>

 \[
 \begin{align*}
 \text{stable.}(r \leq M) & \equiv \\
 & \frac{(r \leq M) \text{ next } (r \leq M)}{}
 \\
 & \equiv \\
 & \frac{\{ (\forall a :: \{ r \leq M \} \ a \{ r \leq M \}) \}}{}
 \\
 & \equiv \\
 & \frac{\{ \text{definition of program} \}}{}
 \\
 & \equiv \\
 & \frac{(\forall x : 0 \leq x < N : \{ r \leq M \} \ r := \max(r, A[x]) \{ r \leq M \})}{\{ \text{assignment axiom} \}}
 \\
 & \equiv \\
 & \frac{(\forall x : 0 < x < N : \ r \leq M \Rightarrow \max(r, A[x]) \leq M)}{\{ x \leq \max(x, y) \}}
 \\
 & \equiv \\
 & \frac{(\forall x : 0 \leq x < N : \ r \leq M \Rightarrow r \leq M)}{\{ \text{predicate calculus} \}}
 \\
 & \text{true}
 \end{align*}
 \]
Example: RoboFlag Drill

Red(i)	Initial	$x_i \in [a, b] \land y_i > c$
	Commands	
	$y_i > \delta$: $y'_i = y_i - \delta$	
	$y_i \leq \delta$: $x'_i \in [a, b] \land y_i > c$	

$P_{\text{Red}}(n) = +\sum_{i=1}^{n} \text{Red}(i)$

Blue(i)	Initial	$z_i \in [a, b] \land z_i < z_{i+1}$
	Commands	
	$z_i < x_{\alpha(i)} \land z_i < z_{i+1} - \delta$: $z'_i = z_i + \delta$	
	$z_i > x_{\alpha(i)} \land z_i > z_{i-1} + \delta$: $z'_i = z_i - \delta$	

$P_{\text{Blue}}(n) = +\sum_{i=1}^{n} \text{Blue}(i)$
RoboFlag Control Protocol

\[r(i, j) = \begin{cases}
1 & \text{if } y_{\alpha(j)} < |z_i - x_{\alpha(j)}| \\
0 & \text{otherwise}
\end{cases} \]

\[\text{switch}(i, j) = r(i, j) + r(j, i) < r(i, i) + r(j, j) \]
\[\lor \quad (r(i, j) + r(j, i) = r(i, i) + r(j, j) \land x_{\alpha(i)} > x_{\alpha(j)}) \]

| Proto(i) \n| Initial | \n| \n| \n| Commands | \n| \n| \n| \n| \n| switch(i, i + 1) : \alpha(i)' = \alpha(i + 1) \n\alpha(i + 1)' = \alpha(i) | \n
\[P_{\text{Proto}}(n) = + \sum_{i=1}^{n-1} \text{Proto}(i) \]
Properties for RoboFlag program

Safety (Defenders do not collide)
\[z_i < z_{i+1} \quad \text{next } z_i < z_{i+1} \]

Stability (switch predicate stays false)
\[\forall i \cdot y_i > 2\delta \land z_i + 2\delta < z_{i+1} \land \neg \text{switch}_{i,i+1} \quad \text{next } \neg \text{switch}_{i,i+1} \]

Robots are "far enough" apart.

Progress (we eventually reach a fixed point)
- Let \(\rho \) be the number of blue robots that are too far away to reach their red robots
- Let \(\beta \) be the total number of conflicts in the current assignment
- Define the metric that captures “energy” of current state (\(V = 0 \) is desired)

\[
V = \left(\binom{n}{2} + 1 \right) \rho + \beta = \sum_{i=1}^{n} r(i,i) \quad \beta = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \gamma(i,j) \quad \text{where } \gamma(i,j) = \begin{cases} 1 & \text{if } x_{\alpha(i)} > x_{\alpha(j)} \\ 0 & \text{otherwise} \end{cases}
\]

- Can show that \(V \) always decreases whenever a switch occurs
\[
\forall i \cdot z_i + 2\delta \delta m < z_{i+1} \land \exists j \cdot \text{switch}_{j,j+1} \land V = m \quad \text{next } V < m
\]
Summary: Reasoning About Programs

Initial tools for reasoning about program properties

- UNITY approach: assume that any (enabled) command can be run at any time
- Hoare triple: show that all (enabled) actions satisfying a predicate P will imply a predicate Q
- “Lift” Hoare triple to define next:
 \[(\forall a : a \in G : \{P\} a \{Q\})\]
- Stability: $\text{stable}(P) \equiv P \text{ next } P$
- Invariants: $\text{invariant}(P) \equiv \text{initially}(P) \land \text{stable}(P)$

Hoare triple: $\{P\} a \{Q\}$